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ADAPTIVE CONTROL VIA A SIMPLE SWITCHING ALGORITHM*

JI FENG ZHANGt AND PETER E. CAINES$

Abstract. In this paper we present an adaptive stabilization control for systems with unknown
constant parameters and stochastic disturbances, which may be neither open-loop stable nor mini-
mum phase. The ideas come from previous works [J. F. Zhang and H. F. Chen, Adaptive stabilization
under the weakest condition, Proc. 31st Control and Design Conference, December 14-18, 1992, pp.
3620-3621, and H. F. Chen, Continuous-Time Stochastic Adaptive Control Stabilizing the System
and Minimizing the Quadratic Loss Function, Tech. Report, Institute of Systems Science, Academia
Sinica, Beijing, 1992], but here we not only simplify the construction procedure of an adaptive control
but also reduce the computational load significantly, so that the adaptive control in this paper is
more practical. Furthermore, parameter estimation is carried out in only a finite time period and,
unlike previous work, the parameter estimates are generated by ordinary differential equations rather
than stochastic differential equations.

Key words, adaptive control, parameter estimation, switching algorithm, continuous time,
stochastic system
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1. Introduction. The switching control strategies of Zhang and Chen [1991]
and Chen [1992] show that an alternation of excitation and control regimes can yield
stabilizing controls. The idea is that, if a certain prediction error test fails at a
specified instant, then a signal which is (in the limit) persistently exciting is applied.
On the other hand, if the test is passed, then a particular certainty equivalence control
law using the current estimate is applied. This strategy has common-sense appeal,
despite the fact that the laws are somewhat complex in their present form. It is shown
in the analysis of these laws that eventually the prediction error tests must always
be passed, and hence it is shown that the system "locks on" to an acceptable control
law. In summary, the adaptive control algorithms used in Zhang and Chen-[1992] and
Chen [1992] are as follows:

Step A) Introduce an appropriate criterion to judge whether or not the param-
eter estimate is satisfactory (for instance, a prediction error criterion).

Step B) Apply an excitation signal to the system, and estimate the unknown
parameters via a least-squares (or related) algorithm until a "satisfactory"
estimate is obtained according to the criterion; and after this,

Step C) construct a control law via the previously obtained "satisfactory" pa-
rameter estimates and use this law to control the system until some "unsat-
isfactory" property appears according to the criterion; and then

Step D) repeat this procedure through Steps B) and C).
If no "unsatisfactory" property appears at some stage in Step C), then the
designed adaptive control law is used forever.

It is worth noticing that in some previous works (i) one or both of the derivatives
dxt and dyt of the system state x and observation process y are required to be mea-
surable in the parameter estimation procedure (see, e.g., Caines [1992]; Chen [1992];
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Chen and Guo [1990]; Chen and Moore [1987]; Duncan and Pasik-Duncan [1990],
[1991]; Gevers, Goodwin, and Wertz [1991]; Goodwin, et al. [1991]; Moore [1988];
Christopeit [1986]); (ii) the criteria used in steps A through C have to be verified
at all time instants, which is an uncountable procedure because of the nature of the
continuous time model (see, e.g., Chen [1992] and Zhang and Chen [1991]); (iii): the
unknown parameters are always estimated no matter whether they are needed or not
(see, e.g., Chen [1992]; Chen and Zhang [1992]; and Zhang and Chen [1991]); (iv)
some external stochastic excitation signals are invoked (see, e.g., Chen and Zhang
[1992] and Zhang and Chen [1992]).

In this paper, we formulate an adaptive control algorithm which (i) avoids use
of dxt or dyt and the introduction of external stochastic signals in the procedures
of parameter estimation and adaptive control, (ii) simplifies the criteria in steps A
through C so that they are required to be verified at discrete time instants only,
(iii) stop the parameter estimation procedure when it is not needed in order to make
the adaptive control law more practical, and finally, (iv) does not use an external
stochastic excitation signal. (In effect the Brownian motion w driving the system is
exploited for this purpose.)

It may be conjectured that such an alternation of identification and control
regimes will work in certain time-varying cases.

2. Full observation systems. In this section we consider the LQ adaptive con-
trol problem for the following system model:

dxt Axtdt + Butdt + Cdwt, t > O,

where xt E n and ut are the state and input of the system and {wt, 9vt } is a
standard Wiener process in m.

Using controls which at any instant t are based only on information available up
to time t, we wish to stabilize the system (2.1). In this paper, this is achieved by the
use of controls which are certain time-interleaved versions of an excitation signal and
a signal designed via the certainty equivalence principle for the following quadratic
loss function:

(2.2) min lim sup Jr(u),
uEb/ t-,cx

where

(2.3)

(2.4)

=a{x, u, 0_<_<t, 0_<s<t}, t_>0

l forJr(u)--- (XQlxs + Q2U2s)ds, Q,1 >_ O, Q2 > O.

This problem has been investigated in previous work; see, for instance, .Zhang and
Chen [1991], Chen [1992], where these authors presented the first rigorous stability
analysis for such adaptive stabilization of a system, which might be neither open-loop
stable nor minimum phase and might be subject to disturbances with an unknown
bound.

Specification of the adaptive control law. First, we define a causal system
which shall generate a disturbance input u’, which shall be employed over an at most
countable set of intervals; second, we define a linear state feedback control law, which
shall be used over the intervals which interleave those during which the disturbance
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is used; then, third, we give a rule for determining the switching times which depend
solely upon the history of the system inputs and outputs.

Following the procedure described from step A to step D, we now find an adaptive
stabilization control for model (2.1).

Assume that the control input u is defined on the interval [0, t); then the input
u and a countable sequence of stopping times with no finite accumulation point are
defined as follows:

Let T > 1 and a be positive constants chosen arbitrarily. Define for 1, 2,
n+l

(2.5) (-1)i+lc (n+ 1)!
i! (n+l-i)!

and for some integer k _> 0

with 0 A__ 1, i!
A
=12...i

LTk -}- #lSklt -}- + n+l n+l Tk+lut s ., t [T, ),

where Skut f;k usds and Lt 1 + f (ll ll + IIz ll + u)ds with Ct [Sx{, Sut]
and zt [S-2, St]’. Here, S is the integral operator Sxt f xsds; xt and ut
are, respectively, the system state and system input, which is recursively given by
(2.5)-(2.12); t and t are the solutions of the following equations, respectively:

(S + l)’t xt, (S + l)t ut,

/oo /oot xt e-(t-)xd), "t ut e-(t-)udA.

It will be seen below that the function u which appears in the definitions above is
equal to u during the time intervals when the excitation input to the system is in
use and is given as a linear function of the state x during the periods when u is not
being used as a system input.

Set 0 [A, B]. Choosing an arbitrary 00, the unknown parameter 0 is estimated
via the least-squares method, which is modified so as to be active only over a sequence
of intervals ITi-1 Ti). Specifically, the estimate Ot [At, Bt] is given by

( /0(2.7) Ct Pt;(t -O[)) with Pt I+

and

-1

zt if t e [0, TTM) or t E IT-I,T) Vi > 1,(2.8) = 0 ifte[T,T)

where {-} and {a} are two stopping time sequences defined as follows"

cri inf{k > Ti_ k if, (AT,BT,D) is controllable and observable,
where here, and hereafter, N" denotes the set of all positive

(2.9) integers, and D is any square matrix such that DD QI},
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f0 k7=inf k>a" kAf,

(2.10)

Tai

JO

+ TiTk + Ti }
with the excitation input u" given by

,, {u ifte[0, T)ortE[Ti-l,T{) Vi>l(2.11) ut 0 iftE[T{,T)

Here Q1 is given in (2.4) and u is defined by (2.6).
The adaptive control u is generated by interleaving the excitation input u’ and a

linear feedback input as follows:

(2.12) ut={u ift[0, T)ort[T-I,T)forsomeil,
_QIBa{ RT{ Xt if t IT{, T{) for some k 1,

where Q2 is the positive constant in (2.4), BT{ is the estimate for B t time instant
T{ given by (2.7) and (2.8), and RT{ is a solution of the following algebraic Riccati
equation:

ART + RTAT RTBTQBRT + DD O.

Here AT is the estimate for A at time instant T given by (2.7) and (2.8).
Remark 2.1. om the definition (2.12) of ut, it is easy to see that 7 and a are

Markov times, i.e., a{T t} t and a{T t} t. Thus, u N and t.
Remark 2.2. The excitation signal in (2.12) is generated by (2.6), in which a de-

signer needs only determine the deterministic coefficients . No additional stochastic
signal is introduced except LT so we call this a deterministic-like excitation signal.

Remark 2.3. In (2.9), to get a, the only thing one should do is t0 check the
controllability and observability of (ATe, BT, D) for every integer k at time instant
Tk. While in (2.10), one need only check whether or not

T rT

JO

for every integer k at time instant Tk and such a set of time instants is evidently
countable.

Remark 2.4. By (2.7) and (2.8) it is easy to see that 0t 0T" for all t [T T).
In other words, unlike in Zhang and Chen [1991] or in Chen [1992], the LS parameter
estimation is not carried out in the time interval IT T). Thus, if adaptive control
(2.12) results in an integer such that ai < and 7i , then the unknown
parameter estimates will be locked on an acceptable value OTi forever.

(t)LEMMA 2.1. Let min denote the smallest eigenvalue of matrix gl Then the
parameter estimate Ot given by (2.7)-(2.12) has the following property:

< + 1) vt > 0(t)min
where here and hereaer c 0 is a possibly random quantity which is independent of
t.
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Proof. Let Ot Ot 0. Then from (2.1) it follows that

xt xo + 0’t + Cwt.

Substituting this into the first equation of (2.7) and noting (2.8), (S + 1)t xt, and
S + 1) zt t we get

-Pttt Ot + tt[(S+ 1) (Cwt) +
where here and hereafter st denotes a time function which exponentially converges to
zero.
om this and the second equation of (2.7) we obtain

d(OPt) _(0)2 + 20,t[(S + 1)-l(Cwt)+ t]dt

which implies that

+ [(s + +

where for the last inequality we have invoked f[(S + 1)-l(Cws)]ds O(t + 1) a.s.
(e.g., Chen and Guo [1990]).

Therefore, Lemma 2.1 is true.
LMMa 2.2. In sstem (2.1), if (A, B) is coetrollable aed t for some

ll t (T, T+], thee there ezist c > O, > 1, aed o > 0 sch that

(T+ eaTS+(2. la) min T V 0.

Pro@ See Appendix A.
TOagM 2.1. g Span(B) C Span(C) and (A,B,D) is coetrollable and observ-

able with DD Q, then eder the a&ptive control (2.12) it is the case that
(a) there is integer sch that < , r , and Ot 0 Vt T;

ds ezist and are fiite(b) limt 7 fo zszds ad limt 7 fo %
Here nd here@er b Span(X) we meae the lieear space spaned b the colme
vectors of X.

Pro@ Let R be the solution of the following algebraic Riccati equation:

A’R + RA RBQIB’R + D’D O.

Then it is well known that A- BQ BR is stable, and hence there is a positive
matrix P such that

p + rp -I.

From this, it is easy to see that there exists a small enough positive constant s such
that

(2.14)
1
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We now define

A if t e [0, T) or t e IT- T),Or= A- BQBRT ift[T,T).
Then the adaptive control system defined above is expressed as

dxt Otxtdt + Bu[dt + Cdwt.

om the definitions (2.9) and (2.10) of sequences {ai} and {i} we see that only
three cases can possibly hold. The first case is that there exists an integer such that_

< and a ; the second is that ai < Ti < for every integer 1, and
the third is there exists an integer such that ai < and 7i . We shall now
show the first two cases are impossible.

Case 1. It is impossible that an integer such that Ti- < and ai exists.
om Lemmas 2.1 and 2.2, it is easy to see that if there were an integer such

that Ti_ < and ai , then there would be

AT A and BT B.

Thus, by the assumption that (A, B, D) is controllable and observable, we see that
there would exist a k such that Tk T- and (AT BT D) is controllable and
observable. This contradicts ai .

Case 2. It is impossible that ai < Ti < for every integer 1.
If for every integer 1, ai < Ti < , then by Lemmas 2.1 and 2.2 it is easy to

see that T . Therefore, there exists io such that for all i io,

which together with (2.14) implies that

1
(2.15) [Ot]] c and PT +OP -I.
Using Ito’s formula (cf. Schwartz [1984]) we find that for k [a, T)

r  l ,ll=d XTPXT 5 xPxo + x (PO + OP)xsds-
do

Ti rT
(2.16) +2/ x:PBuds + 2/ x:eCdwt + tr(CPC)Tk,

J0 Jo

where here and hereafter tr(X) denotes the trace of X.
Note that by Lemma 4 of Christopeit [1986], there exist random numbers d,

independent of t, such that for all k sufficiently large, say, for all k am,

T T n+]
1 1

5 + 5 c" + v e 0,

Then from (2.16), for some random number cm independent of time, we have

T

x)PXT c’" + c’" Ilxll2ds- N IIxll2ds
0 am

+c ll  ll2d + tr(C’PC)r
o
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and hence, for some random number c independent of time,

(2.17)
T Tam

J0

Now there exists sufficiently large that T > c, and so by (2.17) this gives

T

J0
Vk

_
which contradicts Ti <

So, there must exist an integer such that ai < oe and -Thus by (2.7) and (2.8) we get Assertion (a) of Theorem 2.1. Furthermore, (2.10)
together with -i oc implies that

(2.18) limsup
1 j0

Tk

IIxllds < oo a.s.

Notice that Span(B) C Span(C) and (A, B) is controllable implies that (T, C)
is controllable. Then by (2.18) and Lemma B.1 in Appendix B we see that (I)Tz is
stable. Therefore, from Lemma 3 of Chen and Guo [1990] it follows that

exists and is finite a.s.,

which together with (2.12) implies that

lim
l otU2sds Q2B ( l foo It--*oo - T iRT tIn - xsxds (BrRT)r exists and is finite a.s.

This proves Assertion (b) of Theorem 2.1.

3. Partially observed system.

3.1. Problem statement. In this section we consider the single-input single-
output continuous-time system described by

A(S)yt Yo + SB(S)ut + C(S)wt + St Vt >_ O,

where A(S), B(S), and C(S) are polynomials in S with unknown coefficients:

p q

(3.2) A(S) 1 + E aS’ B(S) E bSi-I’ C(S) E cS;
i--1 i--1 i--0

{wt,.Tt} is a standard Wiener process with respect to a nondecreasing a-algebras
{grt} defined on a probability space; yt and ut are the system output and input,
respectively, and measurable with respect to 9rt; and t is unknown disturbance or
unmodeled dynamics which is measurable with respect to t.

As Zhang and Chen (1991) show, model (3.1) subject to (3.2) is very general and
includes some widely used models. For instance, in the case where p and Cp gap,
the input-output properties of (3.1) are equivalent to those of the following well-known
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state-space representation (e.g., Gevers, Goodwin, and Wertz [1991]; Goodwin, et al.
[1991]; Caines [1992])’

dxt Axtdt + Butdt + Cdwt + Drtdt,
dyt Drxtdt + gdwt,

with

-al 1 1
bl ] co gao

0
A= -a2 ".

B= J C= D=
1 bm Cm-1 gam-1

--a, 0

where m max{p, q} and here and hereafter we set a0 17 ai 0 for > p, bj 0
for j > q, and ck 0 for k > 1.

Let us denote the collection of unknown coefficients of A(S) and B(S) by 0:

(3.3) 9 [-a],...,-ap, bl,...,bq] ’.

Let

sl+F(S) 1 + flS +"" + f+] with f+] #- 0

be an arbitrarily given stable polynomial of S; i.e., every S that satisfies F(S) 0
has negative real part.

Denote by y[ and u{ the filtered value, respectively:

(3.4) F(S)y[ Yt, F(S)u{ ut

and

Define

(3.6) t= 0
if t E [0, TTM) or t E ITr-I Ta) for some _> 1,
if t e [T,T) for some _> 1,

where {-i} and {a{} are two stopping time sequences such that
Then the unknown parameter is estimated as follows:

( )(3.7) -0tt) with Pt= I+ 8sds
-1

where 00 is a constant chosen arbitrarily.
The purpose of this paper is to design a 0t-based adaptive control so that the

closed-loop system is stabilized in the sense that

1/0 (3.8) sup
t+ i (Y2s + u2s)ds < c a.s.

t_>0

under the following assumptions:
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A.1. A(S) and SB(S) are coprime, bq = 0, _< min{p, q- 1}, and p and q are
known.

2A.2. supt>0 fo rsds < "From Zhang and Chen [1991] it follows that Assumptions A.1 and A.2 are as weak
as the following necessary and sufficient ones even when 0 is known:

A.I’. The greatest common factor of A(S) and SB(S) is 1 or a stable polynomial,
bq = 0, the order of the greatest common factor, _< min{p, q- 1}, and p and q are
known.

2A’2 supt>0 fo rsds < a.s.
However, for simplicity of notation, in this paper we use Assumptions A.1 and A.2.

Remark 3.1. We now look at how to calculate the filtered values y[ and u{ of Yt
and ut, respectively, with respect to filter F(S) in (3.4).

Let

-fl -f2 -ft+ y[ 1
1 0 0 Sy[ 0

DR= ". ".
Yt H //1.

0 1 0 Sty[ "0
Then from (3.4) we see that

Yt DFSYt / HlYt,

which is equivalent to

Yt DF eDf(t-’)Hlyd, / Hlyt.

Thus we have

y[ HIE yt + H[DF eDF(t-X)Hzyxd).

Similarly, we can get

u{ ut / H[DF eDF(t-)Hlud/.

3.2. Adaptive control. We first look at what the stabilization control is in the
case where is known. To see this, we introduce the following lemma (e.g., Chen and
Guo [1990]).

LEMMA 3.1. Let k >_ 0 be an integer and E(S) 1 + e,S +... + ekSk be a stable
polynomial with ek O. Then there is a (nonrandorn) constant Ce >_ 1 (depending on

E(S) only) such that

i--0

for any square-integrable process {zt}.
If A(S), SB(S) are coprime and bq : 0, then for any polynomial

(3.9) E(S) l + el S + + ep+qSp+q with ep+q k O,
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there exists a unique polynomial pair (G(S), H(S)) such that

(3.10) A(S)G(S) SB(S)H(S) E(S) with O(G(S)) < q- 1 and O(H(S)) p,

where here and hereafter O(X(S)) denotes the degree of the polynomial X(S) in S.
From (3.10) and (3.1)it is clear that

E(S)yt A(S)G(S)yt SB(S)H(S)yt
G(S)[A(S)yt- SB(S)ut] + SB(S)[G(S)ut- H(S)yt]
G(S)[yo + C(S)we + Srle] + SB(S)[G(S)ue H(S)ye]

and

E(S)ue A(S)G(S)ut SB(S)H(S)ue
H(S)[A(S)ye- SB(S)ue] + A(S)[G(S)u- H(S)ye]
H(S)[yo + C(S)we + Stir] + A(S)[G(S)ue H(S)ye].

Therefore, in the case where 0 is known, < min{p, q- 1} and Assumptions A.1
and A.2 hold, for any given stable E(S) subject to (3.9), if the control is defined as
follows:

G(S)ut H(S)yt O, t >_ O,

then the system is stabilized in the average sense (3.8).
Similar to 2, we now introduce a deterministic-like excitation signal u. Let

T > 1 and c be positive constants chosen arbitrarily. Define for I, 2,...,p + q,

/i (-1)i+1ci (P + q)!
i!

/x

i!(p+q-i)!
with 0! /1, =12...i,

and for some integer k >_ 0,

f pq-q Tk+lUt’ LTk + lSkUt q"""-+- pp+qOk (*t, t E ITk, ),

2 fwhere Skut fk usds and Lt 1 + f( oI,,, 9 + ]los,, 2 + u,)ds with o defined by
(3.5) and t defined by

gt [Syt,..., SPyt, Sut, gqut] r.

For any k _> 1, write OT in the component form

and set

p q

(3.12) Ak(S) 1 + E aiTSi’ Ba(S) E biTSi-l"
i=1 i=1

Let E(S) be a stable polynomial subject to (3.9). Then by Lemma 3.1 there is a
constant Ce (depending on E(S) only) such that

/o(3.13) E(S) z
da < C zlda

i=0
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for any square-integrable process {z }.
Let R(S) be a stable polynomial of S with O(R(S)) min{p + 1, q} and let ,

denote the filtered values of ut, Yt with respect to R(S), respectively:

(3.14) R(S) ut, R(S) yt Vt >_ O.

Actually, the filtered values and Y can be calculated as in Remark 3.1.
Set t [St,... ,SPt, S,... ,Sq]. Then by (3.11) and (3.14) we get

(3.15) R(S)t t.

In the following discussion, for a given polynomial Z(S) zo + Zl S - -" ZrSr,
its norm is defined as

IIZ(S)ll z
i=0

Define switching times 1 ’o < al < -1 < a2 < -2"’" as follows:

(
inf k > -_1 Ak(S)Gk(S) SBk(S)Hk(S) E(S) is solvableo-

with respect to Gk(S) and Hk(S) subject to

O(Gk(S)) <: q- 1 and O(Hk(S))=p; and
k

Ila(s)ll + IIH(S)II <
2Ce(p + q + 1);

}[ ] d _< -(,T)

min /k > cr there exists t E (T Tk] such that

[( 0] ds > -f(cr, t)

where Ce is given in (3.13), and

(3.18)f(x t) (t + 1) sup x3 + (SY)2 + y 2Ss ds
o<<t A + 1

kj= j=0

Similar to (2.12) we define the adaptive control ut as follows:

(3.19) ut={u iftE[0, T)ort[T-I,T) for someil,
Ha,(S)yt (Ga,(S) 1)ut if t e [Ta,T’) for some 1,

where H, (S) and G,(S) re generated by (3.16), (3.12), and (3.4)-(3.7).
In this case, similar to Lemmas 2.1 and 2.2 we my obtain the following results.

(t)LEMMA 3.2. Let min denote the smallest eigenvalue of matrix R Then the
parameter estimate Ot given by (3.4)-(3.7) has the following property:

0_ 011 (t + 1) vt > 0(t)min
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for some time-in_dependent random variable c >_ O.
Proof. Let Ot Ot O. Then from (3.1)-(3.3) and (3.5) it follows that

y{ 0o{ + F-I(s)[c(S)wt + ST]t] + st,

where we recall that st denotes a function of time decaying exponentially to zero.
Substituting this into the first equation of (3.7) and noting (3.6), we get

tt ut + Ptt [F-l(S)(C(S)wt + ST]t)+ st]
Then combining this with the second equation of (3.7) gives

d(tTP[-l’t)
dt ’IF-1-(o;) + 2o (s)(c(s) + s) + ],

which together with f[F-(S)(C(S)ws]2ds O(t) (cf. Lemma 3 of Chen and Guo
[1990]) implies that

<_ o (Os)2ds + 2 [F-(S)(C(S)w + ST]8) + st] ds

< P0-10 + [F-I(s)(c(S)ws -- ST]s + t] 2
ds O(t + 1),

where for the final bound we have used Lemma 3.1 and Assumption A.2.
LEMMA 3.3. Under Assumptions A.1 and A.2, if ut u for some k and any

t E (Tk, Tk+], then there exist c > O, a > 1, and ko > 0 such that

l(mTi:+) > caT+LT Vk > ko.

Proof. The proof resembles that of Lemma 2.2 and is given in Appendix C.
THEOREM 3.1. Under Assumptions A.1 and A.2 and the adaptive control (3.4)-

(3.7), (3.16)-(3.19), we get that
(a) there is an integer such that a < o, - oe, and 8t OT Vt >_ T;
() su,_>0 ,- 0( +) < a..

Proof. We first show that it is impossible that T < OC and a+l oc on a sample
set Z) with positive probability for an integer-valued random variable _> 0.

In fact, if there were a sample set Z) of positive probability, i.e., for which P(:D) >
0, which was such that for every sample w E Z), there were an i(w) >_ 0 (for simplicity,
we drop w below) such that T < Oe and a+ oe, then ut u for all t _> -. Thus,
by Lemmas 3.2 and 3.3 we would have that for some constant a > 1

(3.20) IleT, -112 O O ,.s on :D vie > TiaTk LT -which together with Lemma D.1 in Appendix D implies that there exists an integer
k _> 0 such that for any k >_ kl, Ak(S)Gk(S)- SBk(S)Hk(S) E(S) is solvable
with respect to Gk(S) and H(S) subject to O(Gk(S)) _< q- 1 and O(H(S)) p,
and II(k(S)ll 2 -5 IIHk(S)II 2

_
k/(2Ce(p + q + 1)).



ADAPTIVE CONTROL VIA A SIMPLE SWITCHING ALGORITHM 377

From Lemma 3 of Chen and Guo [1990] and the fact that O(R(S)) >_ O(C(S))+ 1
it follows that

while from (3.1), (3.3), (3.14), and (3.15)it follows that

c(s) s
Vt, sP_O.

Therefore, by Assumption A.2, Lemma 3.1, and (3.18) we find that

where (3.20) is invoked for the last equality.
From (3.21) we conclude that there exists an integer k2 kl such that for any

k_> k,

T

(3.22)
f(k,ll) J0 07 (8]2 k-2., [sy T ds <__ a.s. on

Thus, ai+l < oo a.s. on :D. This contradicts ai+l oe on Z) and P(:D) > 0.
We now prove that - oo a.s. for some integer-valued random variable _> 1.
In fact, from Lemmas 3.2 and 3.3 it follows that for some a > 1,

As in (3.21) we would have

where the last inequality is valid for some large enough and t _> T because of
(3.23). Hence there must be Ti oc for some i; i.e., assertion (a) is true. We now
prove assertion (b). From assertion (a) and (3.19) it follows that for some _> 1,

(3.24) H, (S)yt G, (S)ut O, t k T’.

Henceforth, for simplicity of notation, we shall write 0 for 0.
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(3.26)

In view of (3.16) we get

E(S)Skyt SA(S)Ga, (S)yt S+Ba, (S)Ha, (S)yt
SGa, (S)[da, (S)y SBa, (S)u]
+Sk+IBa,(S)[Ga,(S)ut- Ha,(S)yt], k 0, 1,... ,p+ 1;

E(S)S, SH, (S)[A, (S), SB, (S),]
+SA, (S)[C, (S), H, (S),], 0, 1,..., q.

Thus, noting that Aa,(S)yt- SBa,(S)ut yt- O,St, by (3.14), (3.25), and
inequality (a + b) 2 _< 2a2 + 2b2 we get

Sj R(S)- sjYt
E(s)-lsa,(S)R(S)-(w
+E(S)-iR(S)-IsJ+IBa,(S)[Ga,(S)ut Ha,(S)yt]
E(s)-lsc,(S)(
+E(S)-IR(S)-S+B,(S)[C,(S),- H, (S),]
j=0, 1,...,p+l,

and, furthermore, we have

(3.27)

p+l p+l q-1

(sJff) < 2llG,(s)lt 2 X:E[Sj+kE-I(S)( 0;, (s)]2
j=0 j=0 k=0

p+l

+2E E-I(S)R-I(S)Sj+IBa’(S)[Ga’(S)us Ha’(S)Ys])
j=o

p+q

<_ 211G(S)ll2(p/q / x)[SJE-I(S)(- OL()]2

j=O

p+l

+2E E-I(S)R-I(S)Sj+Ba’(S)[Ga’(S)us Ha,(S)Ys]) 2

j=o

and similarly, by (3.26) we get
q q p

-’(sY:)= -< 211H,(S)II X: -[sJ+E-(S)( 0;,C)]
j=o j=o k=o

q

+2E E-(S)R-(S)SjAa,(S)[Ga,(S)u Ha(S)ys]) 2

j=o

p+q

< 2 IH,(S)II=(p / q / 1) E[SJE-I(S)( O;,(s)] 2
j=o

q

(3.28) +2E E-I(S)R-I(S)SjAa,(S)[Ga,(S)u Ha,(S)Ys])
j=o

By Lemma 3.1 and (3.24) we see that

lim sup
1 tt-- t +’i (E-(S)R-(s)sJ+IR---a, (S)[Ga, (S)us Ha, (S)yI)

j=o

d8< a.S.
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and that

-. t’/ 1 (E-(S)R-(S)SA,(S)[G,(S)u H,,(S)ys]) 2
ds < oo a.s.

j=0

Therefore, by (3.27), (3.28), and Lemma 3.1 we conclude that for some < oo which
is independent of t

(3.29)

k=O

_< (p + q + 1)[lla(s)ll +
j=o

< 2(p+q+l)i Ce t
< i"[

1

’t+i I(’t)+u a.s., t 2T,
where (g.17), i < , and i a.s. have been used for the last inequality.

Set

{ 1 j]Fp+I_._ ] }O<A<T{ A+ i
=0

Then from (3.29) and (3.18) it follows that

2

( eL6)] d + ,

ky2 2sup (S s) + E(Sk ds <f-. 0"<
1

0<x<t A + 1
U:0 k:o

t +’i/(a{, t)+ 2

2 -sup { 1 Zx[ ] }i + "2 +1 +’1 (Sk() + (Sk(2) ds a.s.,
O<A< Lk=O

limsup sup { 1 /oX [+k={.q,c] +{,q,c] ] }dsk----O

From this and (3.14), assertion (b) follows

Appendix A. Proof of Lemma 2.2. Let

(A.1) N

/1 /2
i 0

and, for any t ITk, Tk+l),
,_n ITU(k) M, S,..., j
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Then from the definition of ut it follows that for any t E (Tk, Tk+l),

(A.2) dUt(k) NUt(k) with UTk(k) HLTk,
dt

i.e.,

(A.3) SkUt(k) N-1Ut(k)- N-1HLT Vt ITk, Tk+l).
We first to show that there exist constants c > 0, > 1 and k0 such that

(A.4) ,min (Skgs(]))(Skgs(k))Td8 C"Tk+IL2T / 0,

where here and hereafter ,min(X) denotes the minimal eigenvalue of matrix X.
Prom (2.5) and (A.1) we see that the characteristic polynomial det(xI-N) (x-

c)n+l of N coincides with the minimal polynomial of N. Thus there is a nonsingular
(n + 1) x (n + 1) matrix P such that

(A.5) =/x P-INP 1

(n--t- 1) (n--t-- 1)

Let t(k) p-1ut(]) and P-H. Then (A.2) is equivalent to

dUt(k) -. t(k) withT (k) -LTk Vt (Tk, T+).(A.6)
dt

Noting that for a given positive semidefinite matrix U,

min(PUP) _/min(PPr)min(U)

and Amax(PPr) llpl12, by (A.3) and inequality a2 b -(b- a) we have

min (Skgs(k))(Skgs(k))7d8

1> -am(N-N-’)amin U(k)U2(k)ds

1< -Amin(N-1N-)Amin (PP’)Ami U(k)2(k)ds

Thus, in order to show (A.4), it suces to prove that there exist constants c > 0,
> 1, and k0 such that

(A.7) amin (k)2(k)ds 2 cTT+IL Vk ko.

om (A.6) it follows that

F() e t [r, T+1),
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which implies that

(A.8)

Note that (N, H) is controllable and hence (A, H) is controllable. Therefore,

(A.9) /min(foole_,’Ks-’-reX"Sds)
Set

(t- 1) "’.

(t- 1)"
7%! (t- 1) 1

Then from (A.5) we see that

(A.10) cA(t-l) ea(t-1)Et"

It is evident that

det(EtE) 1 and
n

,max (]tr) <_ (n q-- 1) E(t- 1)
i=0

where "max(X) denotes the maximum eigenvalues of X.
l--[n+1Thus, from the fact that det(X) 1i=1 /i(X) for any (n + 1) (n + 1) matrix

with eigenvalues ,i(X) (i 1,..., n + 1) it follows that

,min (t]-) _> [)max (t’)]-n _> (?%-}- 1)E(t- 1)2
i=0

_> (n + 1)-2’(t 1) -2n2 gt > 2.

From this and (A.10) we get that

/min (e-(t-1)e’r(t-1)) >-- e2a(t--1), (n-J- 1)--2n(t- 1) -2n2 /t __> 2,

which together with a > 0, (A.9), and (A.8) implies the desired result (A.7). There-
fore, (A.4) is true.
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We are now in a position to prove (2.13).
Write

Adj(I- AS) I + A1S +... + An-ISn-,
A(S) A__ det(I AS) ao + aS +... + a,S

and set

M= 0 B AIB
ao al a2 an

.where i denotes n n identity matrix.
Clearly, we have

where

Vt [ut, Sut, Sut] ’.

Therefore, we get

(A.11)
1 ( iT ) L 2]e 7/min M (SU,)(SUs)rdsMr cE [s2i + [[Siwsll ds.

t
i=0

Using the argument in, e.g., Zhang and Chen [1991] we can obtain

(A.12) wIJ <2ds ct2+3 0, 1, 2, n,

and

(A.13)

d8

From (A.11)-(A.13) we have
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By induction we can show that

T

I,- ,I-< - ]0 lId W , e,..., W e IT, T+).

om this we see that for any x n+ with x] 1 and t IT, Tk+),

(xV)d [xV()]ds- e()-

2- [xSVs(k)]ds ]u]ds s2(-)ds

> [x’SU(k)]2ds- uds T2i(a+)

> [zU()]d- ( + )T"++2 Us

which implies that

1
(SkU(k))(SkUs(k))rdsmin (es)(Vs)Td8 min

(A.15) -(n + 1)T2(n+)(k+)LT

This together with (A.4) and (A.14) leads to

(A.16)min s2ds c-T-(+)(+)r+L cT(+a)(+).

With (S + 1)zt t in mind, we get

min
T

Cs:d8 :min

min[ Ixz + Sxz]2 ds= JT

4T2(k+l)amin zz2ds + 2T2(k+l)

,min zzs ds >_ 4-T-2(k+1) ’min )s)ds

T

-2-1fo
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From this, (A.16), and the definition of LTk it follows that

)min zsz2ds

_
c-lT-(2n+3)(k+l),.yT+L cT(2n+I)(k+I)LT,

which implies the desired result (2.13).
Appendix B. The following lemma is based on Chen [1992].
LEMMA B.1. If T > 1 is a constant, (F, C) is controllable, F E with

a.s. being a stopping time, and if

(B.1) lim sup
1 f0

T}

for the system

(B.2) dxt Fxtdt + Cdwt, t >_ r,

then F must be stable a.s.

Proof. Assume that Fr has an eigenvalue A with (A) _> 0, where (x) denotes
the real part of a complex number x. Let y be the corresponding eigenvector, i.e.,
Fry- Ay. Then by (B.2) we get

d[(yrxt) + i(yrxt)] [(A) + i(A)][(yrxt) + i(yrxt)]dt + yrCdwt Vt >_ a,

i.e.

(A) -(A) ztdt + dwt,(B.3) dzt= (A) (A) 3(yrC)

where (x) denotes the imaginary part of a complex number x and

zt

Using Ito’s formula, by (B.3) we obtain

which implies (Christopeit [1986]) that for any e (0, 1/2),

(B.4) IIzll IIzll2d / o IIzlld + IlfCll2(t ),

Noting that (B.1) implies that

(B.5) limsup
1 f[Tk

k--o ’ zll2d8 < c,
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by (B.4) we have

( )(B.6) IIzll 2 IIzll /2(,) IIzll2ds/O t1/2/ / Ily’Cll2(t-) vv e (0, /e).

From controllability of (F, C) it is easy to see that ]]yCII = 0, and hence from
(B.6) and (A) _> 0 it follows that for some to >_ a and c > 0,

Ilztll 2 >_ ct Vt >_ to, to random,

which contradicts (B.5).
Appendix C. Proof of Lemma 3.3. As in Appendix A, we can show that

there exist constants c > 0, > 1, and k0 such that

(C.1) /min (SkUs(k))(SkUs(k))ds >_ n Vk>_ko,

where here and hereafter

.p+q-u() b, s,...,
Set Wt yot + SC(S)wt + $27t and M [M1, M.]r with

p+q

’0 bl bq 0 0

.A 0 0 ". ". ".
P

0 0 0 bl bq

and

p+q

1 al aq 0 0

z 0 1 ". ". ".

0 0 1 a aq

Then from (3.1) and (3.11) it follows that

A(S)t MSUt + [Wt, SWt, Sp-Wt,

where here and hereafter,

(c.3) p+q-- tt]Vt [Ut, SUt,...,

Notice that by Assumption A.2, for 1, 2, p,

t it t2i s2i 2 ds < ct2+(Sis)2ds <- 2i(2i- 1)[(i- 1)!] 2
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Then similar to (A.11)-(A.14), by (C.2) we obtain

( )-’ (i.)tmin sTsd8 - 1

C
i=0

(C.4) -c t2i+1 (t + 1)2i+1 ll,lle.
i=0 i=0

By (C.3) and along the argument of (A. 15) we get

T+ 1mn (m.)(mm.)

-(p

mis toeter wit (O.1) na (O.4) leas

(C.) min sds 2 c-IT-(P+I)(k+I)T+
T

With F(S) t in mind, as in (A.a) w

-Tk+ l+l 2

min ] fSx ds
]l=

=0

S cr(2t+)(k+l)Amin ()rds +cT(+)(+) IIllds,

min fs (fs )’d8
_

cT-(2l+3)(k+l)lmin Oso[d8

T

fro IIos d.

From this, (C.5) and the definition of LT it follows that

imin
\JTk

fs(f)’r’d8 2> c-IT-2(p+I+2)(k+I)’),Tk+F --cr2(p+q+l+2)(k+l)T

which implies the desired result, Lemma 3.3. FI

Appendix D.
LEMMA D.1. if A(S) and SB(S) are coprime, bq 0 and

tOTk 0 a.8.,
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then there is an integer-valued K, possibly depending on a sample path such that for
all k >_ K, Ak(S)Gk(S)- SBk(S)Hk(S) E(S) is solvable with respect to Ga(S)
and Hk(S) subject to O(G(S)) <_ q- 1 and O(H(S)) p, and such. that IIG/(S)II 2 +
IIH (S)ll <_ + +

Proof. Let

(D.1) M

p+q+l

1 a ap 0 0 0

0 1 ’. ". ".

". ". ". ". 0 0
0 0 1 a ap 0

(D.2) M 0 0 ’.

0 0 0

(D.3) M’= [M3, M4],
He = [1, e, ep+q] "r.

p+q+l

-Oq" 0 0

-bl -bq

p+l,

Noting that

we see that there exists an integer K _> K’ such that for all k > K, IIGk(S)II 2 +
IIH ( )II I1 , 11 <_ + + 1)).

OTk O,

we see that there is an integer K’ >_ 0 such that for all k _> K’, M is nonsingular,

M M’ and >
q- Srthermore for all k K’, if we set G(S) i=0 gi, H(S) i=0 hi,a Si

with

[go,k, gl,k gq- l,k ho,k hl,k hp,k k

then we have O(Ga(S)) q- 1, O(Sk(S)) p and

A(S)G(S) SB(S)Hk(S) E(S).

[go, 91, gq 1, ho, hi, hp] z

Then recalling that

Replacing ai and bj by their estimates aiTk and bjT respectively, in (D.1)-(D.3)
for 1,..., p and j 1,..., q, we correspondingly denote M3, Ma, and M’ by M3,,
Ma,k, and M. Furthermore, if M is nonsingular, we set k (M)-1He.

Since A(S) and SB(S) are coprime and bq O, we see that M’ given by (D.1)-
(D.3) is nonsingular. Let (M’)-IHe and G(S) q-1 siE=og ,H(S)= Pi=o his
with
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